
SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

1

HOW DO HACKERS HACK? – MOTIVATIONS, TECHNIQUES AND

TOOLS

1 Introduction

In order to develop effective cyber-defences, it is crucial to first understand how hackers hack.

Without this knowledge, mounting or building any defences may result in unexpectedly poor

results. One way to obtain this knowledge is through the deployment of honeypots, a type of

decoy system that lures attackers towards it by appearing vulnerable and exploitable [1].

However, honeypots that can be configured with ease and are quick and easy to deploy are

lacking [2]. Honeypots also need to appeal to attacker motivations to effectively lure attackers.

Hence, the recent example of CVE-2021-44228 or “Log4Shell” was used as a case study to

understand more about current attacker behaviour to develop an effective honeypot.

Two Log4Shell research tools were also examined: Log4Pot [3] and log4shell-vulnerable-app

[4]. Observations of their functionalities corroborate the opinions that most current honeypots

are difficult to configure and deploy, as deploying Log4Pot requires multiple steps and

additional dependencies [3]. Additionally, both tools suggest a lack of comprehensive logging

within honeypots, as log4shell-vulnerable-app does not implement any form of logging and

Log4Pot does not log the attacker’s IP address. Furthermore, since log4shell-vulnerable-app

runs a vulnerable version of Log4j, it also risks compromising the host computer’s security by

potentially downloading malware. It thus raises potential security issues with running actual

vulnerable services within a honeypot.

To address the above flaws, a prototype honeypot was developed. It consists of several network

namespaces within which, server emulation scripts can be executed. Doing so will result in the

network namespaces appearing as either FTP or SSH servers. Logging of access attempts was

implemented within the prototype, along with easy configuration. Due to constraints, the

prototype developed was only tested in an isolated environment. Quantitative and qualitative

evaluation of it was also performed to gauge its effectiveness.

2 CVE-2021-44228, “Log4Shell”

CVE-2021-44228, commonly referred to as “Log4Shell”, was a vulnerability in Apache Log4j

2, a Java library used for logging [5]. Log4Shell enabled attackers to conduct Remote Code

Execution (RCE) by submitting attack strings to services running Log4j, which would then be

logged. The attack string would be formatted as such: “${jndi:ldap://query}”, where “query”

is a placeholder for a malicious domain and the exploit. This would prompt a JNDI lookup for

the query at an LDAP server controlled by the attacker. Variations also later include using the

RMI API instead of LDAP [6]. Log4Shell attacks were prevalent in December 2021 but were

predicted to persist for a long time due to the large scale of the vulnerability.

The phases of a typical Log4Shell attack are as follows [6]:

1. The attack string is sent to and logged by the victim.

2. The attack string is resolved by the JNDI interface and performs a lookup at the

attacker-controlled LDAP or RMI server.

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

2

3. The malicious server returns code, typically bash, that is executed on the victim’s

machine.

4. The malicious code then downloads and executes malware.

2.1 Attacker Motivations, Techniques and Tools

Researchers in [7] conducted a study on the use of scanners by both researchers and attackers

in December and January 2021 with respect to Log4Shell. By collecting the payloads, they

were able to classify the scanners based on their maliciousness. The study found that generally,

malicious scanners were most deployed during December 2021 when the vulnerability was

first discovered [7], indicating that attempted attacks peaked during that period.

Attacker motivations in the Log4Shell incident vary greatly due to the scale of the incident.

However, attacks can be said to be motivated by the RCE capabilities of Log4Shell attacks.

RCE allowed attackers to carry out other phases of an attack such as privilege escalation and

persistence within the compromised network or system. It is easily used in conjunction with

other types of malwares such as cryptocurrency mining tools and information stealers as seen

in [8], a compilation of Log4Shell exploitation attempts and their payloads. Some recorded

examples of payloads include XMRig and the Mirai botnet [8]. Hence, the additional attack

opportunities that a successful Log4Shell attack provided appealed to attackers.

Attackers also employed obfuscation techniques to thwart defensive attempts to sanitise such

user-controlled input for attack strings. By using JNDI nested strings instead of purely

“${jndi:ldap://}, attack strings could pass through web-application firewalls. Examples of

string obfuscation techniques include the usage of lower and upper lookups and system

environment variables [9].

The study also discusses the ease of conducting such attacks in relation to the tools used by

attackers, citing the widespread availability of public YouTube videos [7]. These tutorial

videos explained how to conduct an attack in detail, thus allowing even inexperienced attackers

to exploit the vulnerability. There were also many ready kits for setting up malicious LDAP

servers publicly available on GitHub. Notably, JNDIExploit by feihong-cs can easily be used

to set up a malicious LDAP server to conduct a Log4Shell attack, and also includes instructions

and a list of supported payloads. While the original has been deleted, many copies can still be

found on repositories around GitHub such as [10].

In summary, attackers are motivated to conduct an attack when doing so provides value to

them, such as enabling further attack phases like privilege escalation. If there are readily

available tools, attackers may also be influenced by the ease of carrying out a specific attack to

target the corresponding vulnerability. These principles were subsequently applied in the

development of a honeypot in order to strengthen its ability to lure attackers towards it and

away from actual important systems.

3 Project Design

To address the flaws of current honeypots, the project aims to develop a honeypot using Python

that consists of multiple network namespaces to emulate a busy network. A network namespace

is a container within the Linux kernel with an isolated network environment with its own

routing table and network interfaces [11] and to an attacker performing a network scan, each

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

3

namespace should appear to be an actual machine operating on the network. Within the

namespaces, server emulation scripts were executed, causing the namespaces to appear as

either File Transfer Protocol (FTP) or Secure Shell Protocol (SSH) servers. Attempts to access

the emulated servers would be logged and user configuration was also implemented within the

honeypot. Additionally, the honeypot script was written in a way that allowed it to be deployed

by running a single command in the terminal.

The materials used in the development of the honeypot prototype are Kali Linux1, Wireshark,

and the following Python modules: Scapy, Paramiko, psutil, subprocess, multiprocessing, csv,

datetime, time and ast. The run_steps function in [12] was also used as reference for writing

the code needed to create the network namespaces within Python.

3.1 Choice of Implemented Protocols

FTP was deliberately chosen because of its straightforwardness, thus making it easier to

implement within the prototype, as well as its reputation for being very insecure. RFC 2577

lists several security vulnerabilities in FTP, such as a lack of password protection from

malicious actors who may be listening on a conversation between server and client as payload

data is unencrypted, and brute-force attacks [13]. An abundance of publicly-available tutorials

on brute-forcing access into an FTP server such as [14] also makes attacking an FTP server

appealing to attackers. Hence, an FTP server should be able to serve as an effective decoy for

attackers.

Conversely, SSH is more secure due to its encryption payload data. However, it is still

vulnerable to brute-force attacks and is a valuable target for attackers as it allows for remote

login and command execution [15], which would facilitate further attack phases such as lateral

movement to the other network namespaces.

1 While Kali Linux was used for the development of the prototype, it is not specifically necessary for replication.

Namespaces are a Linux kernel feature which any Linux machine should have.

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

4

3.2 Network Namespaces

Initially, the honeypot was developed on a smaller scale without the implementation of user-

configurability. Three network namespaces named ns1, ns2 and ns3 were first created with the

method described in [16]. This was done to emulate an internal network as seen below in Figure

1.

Figure 1: Simplified network diagram of the namespaces within the host machine.

The bridge, labelled “v-net-0” in Figure 1, acted as a gateway to allow each network

namespace to communicate with each other and external networks. Using the commands in

Listing 1, pairs of virtual ethernet devices were created for each namespace. The interface that

is named in the format of <veth-nsx>, was placed in the corresponding namespace. Meanwhile,

the interface that is named in the format of <veth-brx> would be attached to the bridge.

1 ip link add <veth-brx> type veth peer name <veth-nsx>

2 ip link set <veth-brx> master v-net-0

3 ip link set <veth-nsx> netns <nsx>

Listing 1: Shell commands to create virtual ethernet device pairs. x represents the

corresponding number of the namespace.

To allow the network namespaces to reach an external network, a route was created within each

network namespace using the bridge as the default gateway. Packet forwarding between eth0

and the bridge was enabled within the firewall for the route to work. This is because packets

originating from the namespace must first be forwarded from the bridge to eth0 to reach

external networks.

3.3 Server Emulation

Rather than running legitimate FTP and SSH servers within the namespaces, the vulnerable

services were emulated through Python scripts. This is to minimise the security risks observed

with the log4shell-vulnerable-app which ran a vulnerable version of Log4j and could

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

5

potentially download malware that compromises the system [4]. Doing so also bypasses the

difficulties in configuring commercially available or open-source FTP and SSH servers.

The Scapy Python library was used in writing a Python script to craft and send the appropriate

packets back to an attacker who may be trying to open a session with what appears to be an

FTP server from the attacker’s point of view. First, a normal exchange between a legitimate

FTP server (vsftpd 3.0.3) and a client was observed using Wireshark and outlined within

Figure 2.

Figure 2:Flowchart of a normal exchange between an FTP server and a client when

incorrect credentials are provided.

Only the case of a failed login was observed as the fake FTP server is not intended to have any

accepted credentials; no combination of usernames and passwords will grant the attacker

access. After a failed login attempt, the attacker can pass either the USER request to reattempt

to log in, or the QUIT request to end the session.

The honeypot first crafts and sends a SYN-ACK packet after receiving SYN from the client.

An iptables rule to drop all outbound RST packets from port 21 is added in order to allow the

honeypot to receive ACK from the client before the kernel sends RST-ACK. Subsequently,

server response packets are crafted and sent in response to client requests to replicate a normal

FTP server-client conversation.

Unlike FTP, SSH has a readily available Python library that allows for the implementation of

server functionality: Paramiko. Hence, rather than crafting individual response packets similar

to emulating the FTP server, Paramiko is used. This is also due to the complexity of the SSH

key exchange initialisation and generation which is hard to manually replicate using Scapy.

[17] was used as a reference for writing a Paramiko server script and modified according to the

needs of the project.

3.4 Configuration and Logging

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

6

To address the problem of configurability raised in [2], a configuration text file was created

and integrated into the honeypot. By changing the values in the file, the user can easily choose

the number of namespaces created, the network ID of the namespaces, the host IDs of the

namespaces, and which server emulation scripts should run in each namespace. An example of

the contents of the configuration file can be seen in Appendix A.

Additionally, attempts by attackers to connect to any of the “server” network namespaces

would be logged and written to separate files for either FTP or SSH. A separate script was

written to analyse the contents of the FTP logs. Running it would clean the payloads if needed

and determine when a session started and ended, as well as how long it lasted. A feature to

detect attempts to inject a Log4Shell attack string by searching for “${”, “j”, “n”, “d”, “i” in

the payload was added. Obfuscation attempts can also be detected. Compared to Log4Pot, log

analysis does not attempt to resolve any obfuscated strings and maintains the original in order

to allow for obfuscation methods to be studied. Log analysis for Log4Shell attack strings was

not implemented for the SSH “servers” as from an attacker’s point-of-view, they are not Java-

based and would not be running a vulnerable version of Log4j.

3.5 Validation of Prototype

The prototype was tested with the four network namespaces, ns1, ns2, ns4 and ns6, with the

following IP addresses: 192.168.15.1, 192.168.15.2, 192.168.15.4 and 192.168.15.6, with

192.168.15.7 as the bridge IP address. The FTP server emulation script was executed in ns1

and ns2, while the SSH server emulation script was executed in ns1 and ns6. From a separate

machine, attempts were made to open FTP and SSH sessions with the network namespaces that

run server emulation scripts. Login attempts were then made after establishing a connection.

Test results indicated that the honeypot was successful in replicating the FTP and SSH services

(see Appendix B). Connectivity from an external machine to the network namespaces was also

tested using the ping command. A route was added to the external machine to reach the network

namespaces and test results indicated success in establishing connectivity (see Appendix C).

4 Evaluation Results

To assess the believability of the emulated servers, the time taken for the honeypot to send a

packet was compared to the time taken for an actual server to send a packet.

The evaluative experimental procedure is described below:

1. Sniff a conversation between the honeypot and the client with Wireshark.

2. Record the times taken by the honeypot to send each packet within the conversation.

3. Calculate the average time taken for the honeypot to send a packet as <t1>.

4. Repeat steps 1 to 3, this time recording the average time taken for the honeypot to send

a packet as <t2>.

5. Repeat steps 1 to 3, this time using an actual server instead of the honeypot. Record the

average time taken for the actual server to send a packet as <t0>.

The experiment was conducted once each for FTP and SSH. vsftpd 3.0.3 was used as the actual

FTP server while OpenSSH 9.1 was used as the actual SSH server. Both versions were used as

they were the latest.

Protocol <t1>/s <t2>/s <t0>/s

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

7

FTP 0.0441 0.0448 0.000301

SSH 0.0167 0.0127 0.00895

Table 1: Average time taken to send a packet

All values are recorded to three significant figures in Table 1. The full dataset collected for

FTP and SSH can be found in Appendix D and E respectively. The 8th data point was regarded

as anomalous in the calculations for <t0> for FTP as it was abnormally large and can be

attributed to intentional delay as part of the vsftpd settings [18]. For SSH, the 11th, 13th and

15th data points were abnormally large and regarded as anomalous in the calculations for <t0>.

4.1 Discussion of Results

There is little difference between the average times taken for the honeypot to send a packet in

both SSH conversations and the average time taken for OpenSSH 9.1 to send a packet.

However, the average times taken for the honeypot to send a packet in both FTP conversations

and the average time taken for vsftpd 3.0.3 to send a packet differ by two orders of magnitude.

This can be attributed to the source code for the sendrecv class in Scapy. Every time a packet

is sent, a raw socket is opened and then closed [19], slowing the process. While the difference

is not noticeable by the average person, this deviation from normal behaviour may raise

attacker suspicions if noticed. This can be overcome by either modifying the source code to

keep the socket open or by manually creating a socket without the use of Scapy [19]. However,

due to time constraints, this was not implemented within the current prototype. Furthermore,

using a manually-created socket without Scapy requires each packet to be constructed as an

array of raw bytes. This would negatively impact code readability.

Nevertheless, when a nmap scan is performed, namespaces that run the FTP server emulation

script cannot be detected as up although attackers can successfully connect to them. This affects

their discoverability and limits their effectiveness without the presence of other information

that points towards the existence of the FTP “servers”. However, the namespaces that run the

SSH server emulation scripts can be detected through a nmap scan with no noticeable variations

from the norm (see Appendix F).

Overall, the emulated SSH server is highly believable while the emulated FTP server is flawed,

though adjustments can be feasibly made to increase its deceptive ability.

5 Conclusion

By studying the Log4Shell case study, it was understood that the ease of carrying out an attack

is a primary motivator for attackers. A prototype honeypot was then created using network

namespaces, where server emulation scripts for either the FTP or SSH service can be executed.

Ultimately, while far from perfect, the prototype fulfils its objectives in comparison to most

existing honeypots: not only is it easy to deploy and configure, it also minimises security issues

by manually replicating the vulnerable services rather than running actual copies of them.

Future work can include expanding the honeypot to include server emulation scripts of other

protocols, as well as ensuring discoverability of the emulated servers via nmap. Further

development of the prototype would also open the possibility of field-testing for a more

comprehensive evaluation.

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

8

References

[1] Lutkevich, B., Clark, C., and Cobb, M. (2021). What is a honeypot? How it protects

against cyber-attacks. https://www.techtarget.com/searchsecurity/definition/honey-pot. Date

accessed: 22 December 2022

[2] Acosta, C.J., Basak, A., Kiekintveld, C., and Kamhoua, C. (2022). Lightweight On-

Demand Honeypot Deployment for Cyber Deception. Digital Forensics and Cyber Crime:

p294-312. https://doi.org/10.1007/978-3-031-06365-7_18

[3] Patzke, T. (2022). Log4Pot. [Computer Software]. GitHub.

https://github.com/thomaspatzke/Log4Pot. Date accessed: 25 July 2022.

[4] Tafani-Dereeper, C. (2022). log4shell-vulnerable-app. [Computer Software]. GitHub.

https://github.com/christophetd/log4shell-vulnerable-app. Date accessed: 6 August 2022.

[5] National Institute of Standards and Technology. 2022. CVE-2021-44228 Detail.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228. Date accessed: 14 July 2022.

[6] Burt, A., and Langton, A. (2021). Log4j Vulnerability: Attackers Shift Focus From

LDAP to RMI. https://blogs.juniper.net/en-us/threat-research/log4j-vulnerability-attackers-

shift-focus-from-ldap-to-rmi. Date accessed: 14 July 2022.

[7] Hiesgen, R., Nawrocki, M., Schmidt, T. C., and Wählisch, M. (2022). The Race to the

Vulnerable: Measuring the Log4j Shell Incident. https://doi.org/10.48550/arXiv.2205.02544

[8] Curated Intelligence Trust Group. (2022). Log4Shell-IOCs. GitHub.

https://github.com/curated-intel/Log4Shell-IOCs. Date accessed: 23 December 2022.

[9] Pulikowski, M., and Friman, J. (2022). CVE-2021-44228-PoC-log4j-bypass-words.

GitHub. https://github.com/Puliczek/CVE-2021-44228-PoC-log4j-bypass-words. Date

accessed: 2 August 2022.

[10] nil-malh. (2021). JNDI-Exploit. [Computer Software]. GitHub. https://github.com/nil-

malh/JNDI-Exploit. Date accessed: 6 August 2022.

[11] Kerrisk, M. 2021. network_namespaces(7) — Linux manual page.

https://man7.org/linux/man-pages/man7/network_namespaces.7.html. Date accessed: 26

August 2022.

[12] larsk. (2019). python-netns. (Version 1.0). [Computer Software]. GitHub.

https://github.com/larsks/python-netns. Date accessed: 28 August 2022.

[13] Allman, M., and Ostermann, S. (1999). FTP Security Considerations. RFC 2577.

https://www.rfc-editor.org/info/rfc2577.

[14] Null Byte. (2020). Brute-Forcing FTP Credentials for Server Access [Tutorial].

[Video]. YouTube. https://www.youtube.com/watch?v=hE_Kjav323U

https://www.techtarget.com/searchsecurity/definition/honey-pot
https://doi.org/10.1007/978-3-031-06365-7_18
https://github.com/thomaspatzke/Log4Pot
https://github.com/christophetd/log4shell-vulnerable-app
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://blogs.juniper.net/en-us/threat-research/log4j-vulnerability-attackers-shift-focus-from-ldap-to-rmi
https://blogs.juniper.net/en-us/threat-research/log4j-vulnerability-attackers-shift-focus-from-ldap-to-rmi
https://doi.org/10.48550/arXiv.2205.02544
https://github.com/curated-intel/Log4Shell-IOCs
https://github.com/Puliczek/CVE-2021-44228-PoC-log4j-bypass-words
https://github.com/nil-malh/JNDI-Exploit
https://github.com/nil-malh/JNDI-Exploit
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://github.com/larsks/python-netns
https://www.rfc-editor.org/info/rfc2577
https://www.youtube.com/watch?v=hE_Kjav323U

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

9

[15] Ylonen, T. (2006). The Secure Shell Protocol (SSH) Architecture. RFC 4251. (C.

Lonvick, Ed.) https://www.rfc-editor.org/info/rfc4251

[16] KodeKloud. (2019). Network Namespaces Basics Explained in 15 Minutes. [Video].

YouTube. https://www.youtube.com/watch?v=j_UUnlVC2Ss.

[17] ysc3839. (2016). FakeSSHServer. [Computer Software]. GitHub.

https://github.com/ysc3839/FakeSSHServer. Date accessed: 13 December 2022.

[18] redhat. n.d. 22.5. vsftpd Configuration Options. https://web.mit.edu/rhel-doc/5/RHEL-

5-manual/Deployment_Guide-en-US/s1-ftp-vsftpd-conf.html. Date accessed: 16 December

2022.

[19] byt3bl33d3r. (2015). Mad-Max Scapy: Improving Scapy's packet sending

performance. GitHub. https://byt3bl33d3r.github.io/mad-max-scapy-improving-scapys-

packet-sending-performance.html. Date accessed: 16 December 2022.

https://www.rfc-editor.org/info/rfc4251
https://www.youtube.com/watch?v=j_UUnlVC2Ss
https://github.com/ysc3839/FakeSSHServer
https://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/s1-ftp-vsftpd-conf.html
https://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/s1-ftp-vsftpd-conf.html
https://byt3bl33d3r.github.io/mad-max-scapy-improving-scapys-packet-sending-performance.html
https://byt3bl33d3r.github.io/mad-max-scapy-improving-scapys-packet-sending-performance.html

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

10

Appendix A

Appendix B

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

11

Appendix C

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

12

Appendix D

t1/s t2/s t0/s

0.074759843 0.079432678 0.000044027

0.039856076 0.039918821 0.002313942

0.052834112 0.050268735 0.000030856

0.040283050 0.040641387 0.000084681

0.037144439 0.034666087 0.000077256

0.034436012 0.033571932 0.000247274

0.040502623 0.037276313 0.000076506

0.045547667 0.036962810 2.896050058

0.055824055 0.043706311 0.000065371

0.040506942 0.037899277 0.000178723

0.032445725 0.043648937 0.000162134

0.035589999 0.060133811 0.000031478

Appendix E

t1/s t2/s t0/s

0.000225317 0.000305760 0.000058802

0.000341773 0.001197591 0.000018143

0.000155247 0.000363456 0.006594756

0.000280465 0.000904525 0.003133064

0.001479525 0.000469562 0.002114612

0.041389949 0.001560465 0.040463249

0.046187327 0.004326112 0.000045493

0.000297305 0.000220167 0.000204319

0.000398089 0.000187800 0.009406813

0.000468169 0.054243481 0.045231670

0.043924493 0.049813667 2.284267687

0.042061073 0.048364606 0.000072566

0.055067892 0.003690925 2.329394052

0.001516435 - 0.000072026

- - 2.329585104

SS023

How do Hackers Hack? – Motivations, Techniques, Tools

Bethanie Low Xiao Hui

13

Appendix F

